Gable, C. M., Betz, H. F. \& Maron, S. H. (1950). J. Amer. Chem. Soc. 72, 1445.
Gantzel, P. K., Sparks, R. A. \& Trueblood, K. N. (1962). I.U.Cr. World List of Crystallographic Computer Programs, 1st ed. Program 384.
Giauque, W. F., Hornung, E. W., Kunzler, J. E. \& Rubin, T. R. (1960). J. Amer. Chem. Soc. 82, 62.
GiguÈre, P. A. (1966). Revue de Chimie minérale, 3, 627.
Hülsmann, O. \& Biltz, W. (1934). Z. allg. anorg. Chem. 218, 369.
International Tables for X-ray Crystallography (1952). Vol. I. Birmingham: Kynoch Press.

International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Johnson, C. K. (1965). ORNL-3794, Oak Ridge National Laboratory, Oak Ridge, Tennessee.

Jönsson, P.-G. \& Olovsson, I. (1968). Acta Cryst. In the press.
Kunzler, J. E. (1953). Anal. Chem. 25, 93.
Kunzler, J. E. \& Giauque, W. F. (1952). J. Amer. Chem. Soc. 74, 5271.
Lindgren, J. \& Olovsson, I. (1968). Acta Cryst. In the press.
Millen, D. J. \& Vaal, E. G. (1956). J. Chem. Soc. p. 2913.

Olovsson, I. (1960). Ark. Kemi, 16, 437.
Richards, R. E. \& Smith, J. A. S. (1951). Trans. Faraday Soc. 47, 1261.
Savoie, R. \& Giguère, P. A. (1964). J. Chem. Phys. 41, 2698.

Van den Hende, J. H. (1962). Esso Research and Engineering Company, CBRL-27M-62.

Direct Determination of the Crystal Structure of $\mathrm{PaOCl}_{2}{ }^{*}$

By Richard P.Dodge, \dagger Gordon S. Smith, Quintin Johnson and Robert E. Elson
Lawrence Radiation Laboratory, University of California, Livermore, California, U.S.A.

(Received 12 June 1967)

Abstract

A compound obtained during a reduction of PaCl_{5} has been studied by single-crystal X-ray diffraction techniques and identified as the oxydichloride, PaOCl_{2}. Crystals of this material are orthorhombic with $a=15 \cdot 25, b=17.86, c=4.01 \AA$. The space group is $P b a m$, and the unit cell contains twelve PaOCl_{2} units. Phase determination was by means of the symbolic addition procedure; full-matrix least-squares refinement of diffractometrically measured data resulted in a final R index of 7.6%. The structure consists of infinite polymeric chains which extend along the short c axis and which are cross-linked to one another in the $a b$ plane by bridging Cl atoms. The repeating unit of structure along the chain is the twelve-atom aggregate, $\mathrm{Pa}_{3} \mathrm{O}_{3} \mathrm{Cl}_{6}$. The Pa atoms are seven-, eight- and nine-coordinated. The oxygen atoms are three- and four-coordinated; the chlorine atoms, two- and three-coordinated. $\mathrm{Pa}-\mathrm{O}$ and $\mathrm{Pa}-\mathrm{Cl}$ bond distances are in the respective ranges $2 \cdot 19-2 \cdot 38 \AA$ and $2 \cdot 74-3 \cdot 08 \AA$.

Introduction

During the course of preparing protactinium tetrachloride by hydrogen reduction of the pentachloride, we encountered crystals quite unlike those of the expected product. It appeared likely that the unknown phase was a second modification of PaCl_{4} or possibly a chloride of mixed oxidation states, e.g. $\mathrm{Pa}_{2} \mathrm{Cl}_{9}$. A crystal-structure determination shows the phase instead to be a complex oxychloride of empirical composition PaOCl_{2}.

We may mention that solution of the crystal structure was effected by the symbolic addition procedure. Prior to that, an attempt by conventional Patterson analysis had been unsuccessful. In retrospect, the lack of success with the latter approach is traceable to a

[^0]serious misestimate of the number of Pa atoms within the unit cell. On the other hand, this misestimate proved of no handicap in the symbolic addition procedure.

Experimental

Our sample of protactinium, in the form of $\mathrm{PaO}_{2 \cdot 25}$, was received from Oak Ridge National Laboratory. This sample, originally part of a gram-scale lot recovered by investigators at the Atomic Energy Research Establishment, Harwell, England, is now known to contain about $4 \% \mathrm{Nb}$ [for further details see Stein (1964)]. Preparation of the samples followed lines previously described (Elson, Fried, Sellers \& Zachariasen, 1950). $\mathrm{PaO}_{2 \cdot 25}$ was treated with carbon tetrachloride at about $200^{\circ} \mathrm{C}$ to produce PaCl_{5} as well as a less volatile component (probably oxychlorides of Pa^{\vee}). Following fractional sublimation, the pentachloride was reacted with hydrogen at $800^{\circ} \mathrm{C}$. Unreacted pentachloride was separated from the less volatile tetra-
chloride by fractional sublimation. PaCl_{4} was sublimed into thin-walled glass capillaries. These capillaries were filled with hydrogen, sealed off, and then placed in a thermal gradient to promote the growth of single crystals. These capillaries served to protect the samples against the hydrolytic effects of moisture as well as to protect personnel from radioactive hazards $\left({ }^{231} \mathrm{~Pa}\right.$, the isotope used, is an α-emitter).

Despite precautions, at least part of the product obtained proved ultimately to be an oxychloride. It may well be that trace amounts of moisture in the hydrogen gas caused an accidental hydrolysis of PaCl_{4}. Alternatively, an oxychloride of Pa^{\vee} may have been carried along in the fractional separations. Conceivably, this material could have been converted to PaOCl_{2} by reduction. Our syntheses typically involve 0.1 mg of $\mathrm{PaO}_{2 \cdot 25}$ so that side reactions due to traces of moisture become relatively important. Moreover, our experimental techniques were conducive to the detection of minute amounts of products that might otherwise go unnoticed in larger preparations. For example, the entire diffraction record came from a crystal weighing approximately 0.10 microgram.

Microscopic examination of one sample tube showed a cluster of orange crystals. One thin blade-like crystal measuring about $0.02 \times 0.002 \times 0.35 \mathrm{~mm}$ had apparently broken off this cluster and was adhering to the capillary wall, well separated from the others. This specimen was examined further by X-rays on a General Electric XRD-5 diffractometer equipped with a goniostat. The crystal class proved to be orthorhombic rather than tetragonal as reported for PaCl_{4} (Elson et al., 1950). The systematic extinctions ($0 \mathrm{kl}, k$ odd; $h 0 l, h$ odd) are characteristic of the space groups Pbam and Pba2 (International Tables for X-ray Crystallography, 1952). Refined values of the lattice constants based on Mo $K \alpha=0.7107 \AA$ are: $a=15 \cdot 25, b=17 \cdot 86$, $c=4.01 \AA$ (with probable errors of 0.3%). Oscillation and Weissenberg photographs indicated the crystal would be suitable for intensity purposes.

Intensity measurements were carried out by the sta-tionary-crystal, stationary-counter technique (Furnas, 1957). The radiation used was Zr -filtered Mo $K \alpha$. In all, 610 reflections were recorded up to a 2θ-cutoff of 40°. The intensities were reduced to relative $|F|$'s through the application of Lorentz-polarization factors.

Determination of the structure

That the orthorhombic phase was a second form of PaCl_{4} received support from volume and density considerations. In closest packing, each chlorine atom requires about $34 \AA^{3}$. From this the number of chlorine atoms indicated within the unit cell was 32 . For eight molecules of PaCl_{4} per unit cell, the calculated density was $4.53 \mathrm{~g} . \mathrm{cm}^{-3}$, a value only 4% smaller than the calculated density for tetragonal PaCl_{4} (Elson et al., 1950). It also appeared reasonably certain that the z coordinates of the atoms could only be 0 and $\frac{1}{2}$. This
followed from the observation of an exceptionally strong 002 reflection, as well as from packing restraints imposed by the short c axis ($4 \cdot 01 \AA$).

The Patterson function was far more complex than expected. The peaks were indeed heavily concentrated at levels of $W=0$ and $\frac{1}{2}$; however, no satisfactory interpretation could be obtained for an ordered arrangement of eight heavy atoms. A solution in terms of a disordered structure was pursued briefly, but again without success.

At this point, phase determination by means of the symbolic addition procedure (see, e.g. Karle \& Karle, 1965) was tried. Prof. H. L. Ammon kindly supplied a copy of his PHASER program for this purpose. Operational aspects and general strategy of the PHASER program have been described by Ammon \& Sundaralingam (1966). Conversion of intensity data to $|E(h k l)|$ values and their sorting with regard to magnitude and parity of Miller indices was accomplished through the use of J. M. Stewart's X-ray 63 library of programs.

The symbolic addition procedure was carried out on the 109 reflections having $|E|$'s greater than $1 \cdot 3$. Origin determining signs were chosen for the $8,11,1,8,7,2$ and $1,10,3$ reflections as + , - and + , respectively. (In using this direct method, we assumed the structure to be centrosymmetric.) It also appeared likely that the sign of 002 was + (as would be expected for a heavy concentration of atoms at $z=0$ and $\frac{1}{2}$) and that 870 had the same sign as 872 , namely - . One additional reflection, 2,13,1, was given a symbolic sign. A pass through PHASER produced a consistent set of signs for a phase angle of π for $2,13,1$. Of the 109 signs determined, all agreed with our final structure factor calculation.

A Fourier synthesis with these E 's as coefficients showed, to our surprise, twelve Pa peaks rather than eight as heretofore expected. Vector interactions between these atoms gave good agreement with the observed Patterson map. An R index of 27% for the structure factor calculation convinced us further of the essential correctness of the model. Conventional 'heavy-atom' techniques were used to locate first the chlorine atoms and then the oxygen atoms. Difference maps gave residual features around Pa sites, and anisotropic temperature factors for Pa were used in subsequent refinements.

Is is quite clear that the difficulty we experienced in interpreting the Patterson map was due to a strong predilection for eight Pa atoms per unit cell. As mentioned, the evidence for this, while indirect, was persuasive. We note that this same assumption went into the direct-method approach. That is to say, E values were computed on the basis of there being eight PaCl_{4} molecules per unit cell. As the cell actually contains twelve PaOCl_{2} units, the derived E values were not correct. Nevertheless, phase determination by the symbolic addition procedure was perfectly straightforward. Our experience here suggests that the symbolic addition procedure, in conjunction with 'heavy-atom' tech-
niques，could be applied with success to materials whose unit cell contents are only approximately known． This would be of particular value in the case of minerals and intermetallic compounds．

The structure model was refined by the full－matrix least－squares program of Gantzel，Sparks \＆Trueblood （ACA Program No．317，unpublished）．Pa atoms were given anisotropic temperature parameters；the others， isotropic thermal parameters．Atomic scattering factors for Pa were Hartree－Fock－Slater values of Hanson， Hermann，Lea \＆Skillman（1964），corrected for anom－ alous dispersion（Cromer，1965）；scattering factors for Cl^{-}and O were those listed in International Tables for X－ray Crystallography（1962）．The refinement was based on $|F|$ with the following weighting scheme（Smith，

Johnson \＆Nordine，1965）：$w=F_{o}^{1 / 4}, F_{o}<A ; w=$ $A^{5 / 4} F_{o}^{-1}, F_{o}>A$ ．On the scale of the structure factor data of Table 1，A is 360 ．Six cycles of refinement reduced the conventional R index to 7.6%（all reflec－ tions）．Changes in the parameters at this stage were <0.001 times the standard deviations．Parameters from the last cycle were accepted as final，and are given in Table 2．（A refinement series was carried out in terms of the non－centrosymmetric space group Pba2，i．e．all z parameters，save one，were also allowed to vary．With this additional freedom，the z parameters tended to oscillate near their values in Pbam，and convergence was slow．After seven cycles the R index decreased to $7 \cdot 3 \%$ ．Differences between the x and y coordinates from those obtained in Pbam were negligible．For nine

Table 1．Observed and calculated structure factors

S FCAL
 $\begin{array}{rr}9 & 150 \\ 10 & 50 \\ 11 & 23 \\ 12 & 53\end{array}$
$\begin{array}{rrr}\text { H，LI } & 9,2 \\ K & F O B S & F C A L \\ 1 & 251 & -255 \\ 2 & 21 & -24 \\ 3 & 30 & -18 \\ 4 & 105 & 84 \\ 5 & 143 & -144 \\ 6 & 70 & 69 \\ 7 & 108 & -106 \\ 8 & 95 & -97 \\ 9 & 117 & 114 \\ 10 & 129 & 131\end{array}$ 149
44
3
-45 かのいの $\begin{array}{rrr}5 & 110 & -114 \\ 6 & 101 & 10 \\ 7 & 22 & -22 \\ 8 & 211 & 212 \\ 9 & 33 & -3 \\ 10 & 24 & -3 \\ \mathrm{H}, \mathrm{L}= & 11, \\ \mathrm{~K} & \mathrm{FOBS} & \mathrm{FCAL} \\ 1 & 102 & 9 \\ 2 & 135 & 147 \\ 3 & 113 & 115 \\ 4 & 161 & -146 \\ 5 & 74 & 75 \\ 6 & 34 & -4 \\ 7 & 15 & \end{array}$
 $\mathrm{H}, \mathrm{L}=12$,
K FOBS

， | K | FOBS | FCAL |
| ---: | ---: | ---: |
| 0 | 160 | 135 |
| 1 | 70 | 82 |
| 2 | 251 | -250 |

 $H, L=10$ $\mathrm{H}, \mathrm{L}=1$
K FOBS
$0 \quad 278$

of the twelve independent atoms, z parameters were within 1.5σ of values in Pbam; z parameters for the other three atoms $[\mathrm{Pa}(2), \mathrm{Cl}(5)$ and $\mathrm{Cl}(6)]$ deviated by $3-7 \sigma$. Whether this represents a significant departure from centrosymmetry for the structure as a whole is problematical. In view of suspected systematic errors in the intensity data, as well as somewhat limited resolution along the c axis, we feel it is justifiable to ignore the lower R index obtained in Pba2. Grosser features of the structure are, of course, unaltered, whichever space group is adopted.)

Fig. 1. Projection of structure on (001). Infinite polymeric chains, $\left(\mathrm{Pa}_{3} \mathrm{O}_{3} \mathrm{Cl}_{6}\right)_{n}$, run normal to page. Open circles represent Cl atoms; stippling and stripes in circles indicate Pa and O atoms, respectively. Atoms at $z=0$ are indicated by small zeroes; the remaining atoms are at $z=\frac{1}{2}$.

There appears to be a small, but definite, trend in our data in that for weak reflections the observed structure amplitudes are generally larger than the calculated values. A number of possible explanations can be advanced: background levels somewhat underestimated, uncertainties in the scattering factors for Pa , or incorporation of contaminant Nb into Pa sites. None were explored further. The fairly pronounced anisotropy of thermal vibration for Pa atoms (all have large B_{11} terms) probably reflects these deficiencies. The absorption coefficient of PaOCl_{2} is calculated to be $512 \mathrm{~cm}^{-1}$ for Mo $K \alpha$ radiation; hence absorption errors may also be responsible in part for the observed anisotropy.

Despite these reservations, the intensity data sufficed to locate the unsuspected oxygen atoms in a straightforward way. These atoms were readily apparent in a difference synthesis (after the $\mathrm{Pa} / \mathrm{Cl}$ ratio was established as $1: 2$) as peaks about one-half as high as those for Cl atoms, and moreover were quite well-behaved during least-squares refinement. A structure-factor calculation with the oxygen atoms removed, but with Pa and Cl at their final positions, gave an R value of 9.9%. Comparison of this with the final R of 7.6% illustrates the overall contribution of oxygen to the structure factors. A final difference map shows some residual features which occasionally amount to $\pm 2 \mathrm{e} . \AA^{-3}$, but which, however, are diffuse, irregular, or impossibly close to atomic sites.

At the time our structural analysis was completed, we could find no account of PaOCl_{2} in the literature. Hence, identification of the small peaks as oxygen (rather than, say, nitrogen or fluorine) and specifically as oxide oxygen (rather than OH^{-}or $\mathrm{H}_{2} \mathrm{O}$) followed from chemical intuition. Quite recently, Dr D. Brown has kindly furnished us with a preprint (Brown \& Jones, 1967) describing the preparation and properties of PaOCl_{2}. Of especial interest is the fact that the powder pattern data given for their preparation are satisfactorily accounted for by the present structure. Dr Brown also reports that the oxydichlorides of Th, Pa, U and Np are all isostructural with one another.

Table 2. Final parameters
E.s.d.'s in parentheses. Anisotropic temperature factor expressed as: $\exp \left[-\frac{1}{4}\left(B_{11} h^{2} a^{* 2}+B_{22} k^{2} b^{* 2}+B_{33} l^{2} c^{* 2}+2 B_{12} h k a^{*} b^{*}\right)\right]$. Units of B or $B_{i j}$ are \AA^{2}.

	$104 x$	$104 y$	z	B or B_{11}	B_{22}	B_{33}	B_{12}
	$3372(2)$	$2480(1)$	$\frac{1}{2}$	$2 \cdot 6(0 \cdot 1)$	$0 \cdot 9(0 \cdot 1)$	$0 \cdot 3(0 \cdot 1)$	$-0 \cdot 2(0 \cdot 1)$
$\mathrm{Pa}(1)$	$1566(2)$	$1656(1)$	0	$2 \cdot 5(0 \cdot 1)$	$0 \cdot 6(0 \cdot 1)$	$0 \cdot 4(0 \cdot 1)$	$-0 \cdot 1(0 \cdot 1)$
$\mathrm{Pa}(2)$	$2815(2)$	$248(1)$	$\frac{1}{2}$	$3 \cdot 1(0 \cdot 1)$	$0 \cdot 4(0 \cdot 1)$	$0 \cdot 4(0 \cdot 1)$	$0 \cdot 2(0 \cdot 1)$
$\mathrm{Pa}(3)$	$1206(13)$	$4510(10)$	0	$2 \cdot 6(0 \cdot 4)$			
$\mathrm{Cl}(1)$	$4711(12)$	$2819(10)$	0	$1 \cdot 8(0 \cdot 4)$			
$\mathrm{Cl}(2)$	$654(11)$	$838(9)$	$\frac{1}{2}$	$1 \cdot 7(0 \cdot 3)$			
$\mathrm{Cl}(3)$	$1393(10)$	$2830(8)$	$\frac{1}{2}$	$1 \cdot 0(0 \cdot 3)$			
$\mathrm{Cl}(4)$	$3286(13)$	$4033(10)$	$\frac{1}{2}$	$2 \cdot 6(0 \cdot 4)$			
$\mathrm{Cl}(5)$	$4287(12)$	$1146(10)$	$\frac{1}{2}$	$2 \cdot 0(0 \cdot 4)$			
$\mathrm{Cl}(6)$	$2818(29)$	$2333(22)$	0	$1 \cdot 5(0 \cdot 9)$			
$\mathrm{O}(1)$	$544(25)$	0	$2 \cdot 2(1 \cdot 0)$				
$\mathrm{O}(2)$	$2285(31)$	$1491(22)$	$\frac{1}{2}$	$1 \cdot 5(0 \cdot 9)$			
$\mathrm{O}(3)$	$2330(29)$	14					

Discussion of structure

The structure consists (Fig. 1) of an infinite polymeric chain extending along the short c axis, and cross-linked in the $a b$ plane to symmetry-related chains by chlorine atoms [$\mathrm{Cl}(2)$ and $\mathrm{Cl}(5)$]. The repeating element within the chain (and in fact the asymmetric unit of structure) is the twelve-atom aggregate, $\mathrm{Pa}_{3} \mathrm{O}_{3} \mathrm{Cl}_{6}$. Each of these Pa atoms exhibits a different coordination number: 8 for $\mathrm{Pa}(1), 9$ for $\mathrm{Pa}(2)$ and 7 for $\mathrm{Pa}(3)$. The complexity is further heightened by the diverse structural roles displayed by the light atoms. Oxygen atoms are threeand four-coordinate. Most of the chlorine atoms are two-coordinate of the usual bridging type; some, however, are coordinated to a third Pa atom.

At the core of this infinite chain is the $\mathrm{Pa}-\mathrm{O}$ framework illustrated in Fig. 2. The O(3) atom is surrounded by four Pa atoms at the corners of a somewhat irregular tetrahedron ($\mathrm{Pa}-\mathrm{O}(3)-\mathrm{Pa}$ angles range from 104° to 120°). The $\mathrm{O}(1)$ and $\mathrm{O}(2)$ atoms are each bonded* to 3 Pa atoms. The disposition of these bonds is more nearly coplanar, sums of the angles around $\mathrm{O}(1)$ and $\mathrm{O}(2)$ being $358.2^{\circ}(=2 \times 112.9+132 \cdot 4)$ and 353.7° ($=2 \times 112 \cdot 6+128 \cdot 5$), respectively. This $\mathrm{Pa}-\mathrm{O}$ framework bears a striking resemblance to a portion of the $\mathrm{PaO}_{2}\left(\mathrm{CaF}_{2}\right.$-type) structure (Fig. 3). (For the full PaO_{2} structure there are these important differences: the Pa / O ratio is of course $1: 2$, and each O is coordinated to four Pa atoms at the corners of a regular tetrahedron.) In PaOCl_{2}, the $\mathrm{Pa}-\mathrm{O}$ bond distances involving four-coordinate $\mathrm{O}(3)$ are 2.34 (three times) and $2.38 \AA$ (σ 's $=0 \cdot 02-0.04 \AA$), slightly less, but not significantly so, than the corresponding distance of $2 \cdot 39 \AA$ in PaO_{2} (from data cited by Pearson, 1958). $\mathrm{Pa}-\mathrm{O}$ distances involving $O(1)$ and $O(2), 2 \cdot 19,2 \cdot 23,2 \cdot 26$ and $2 \cdot 27 \AA$, are smaller in just about the proportion expected (Pauling, 1960) for a change in coordination number from 4 to 3.

Positions of the Cl atoms within the chain are illustrated in Fig.4. Half of these Cl atoms also occupy positions which resemble those of O atoms in PaO_{2}. These are: $\mathrm{Cl}(1)$, which bridges two $\mathrm{Pa}(3)$ atoms; $\mathrm{Cl}(2)$, which bridges two $\mathrm{Pa}(1)$ atoms; and $\mathrm{Cl}(6)$, which bridges $\mathrm{Pa}(1)$ and $\mathrm{Pa}(3)$. The $\mathrm{Cl}(3)$ and $\mathrm{Cl}(4)$ atoms connect $\mathrm{Pa}(2)$ atoms along the chain direction, but in a different way from that in PaO_{2}. Whereas in PaO_{2}, the Pa atoms are surrounded by a cube of O atoms, in PaOCl_{2} the 'square' of $2 \mathrm{Cl}(3)$ and $2 \mathrm{Cl}(4)$ atoms is rotated by about 45° relative to the 'square' of four O atoms. This arrangement of O and Cl is quite similar to that in PbFCl , a common structure-type for actinide and lanthanide oxymonochlorides (Wyckoff, 1963).

[^1]

Fig. 2. Portion of $\mathrm{Pa}-\mathrm{O}$ framework in PaOCl_{2}. Direction of view is approximately normal to c axis (the chain direction). Values of z increase from bottom to top of page. Values of y increase to right, but y axis is tipped $\sim 20^{\circ}$ into page.

Fig. 3. Portion of the cubic $\mathrm{PaO}_{2}\left(\mathrm{CaF}_{2}\right.$-type $)$ structure drawn to bring out resemblance to $\mathrm{Pa}-\mathrm{O}$ framework in PaOCl_{2} (Fig. 2).

Addition of $\mathrm{Cl}\left(2^{\prime}\right)$ from a neighboring chain completes a ninefold coordination about $\mathrm{Pa}(2)$ (5 Cl and 4 O atoms).

We have previously referred to the coordination number of $\mathrm{Pa}(1)$ as being 8 , and that of $\mathrm{Pa}(3)$ as being 7 . Actually, this distinction is not clear-cut. Fig. 4 shows a rather similar and almost mirror-imaged disposition of ligands around $\mathrm{Pa}(1)$ and $\mathrm{Pa}(3)$, an exception to this being the much closer approach of $\mathrm{Cl}(4)$ to $\mathrm{Pa}(1)$ than $\mathrm{Cl}(3)$ to $\mathrm{Pa}(3)$. The distances of interest are (Table 3): 3.08 and $3.46 \AA$, respectively. This skewness, rather than having both $\mathrm{Cl}(3)$ and $\mathrm{Cl}(4)$ equidistant from a Pa atom at the mean separation of $3.27 \AA$, is probably related to the fact that $\mathrm{Pa}(1)$, being bonded to two
three-coordinated $\mathrm{Cl}(2)$ atoms, is still able to interact electronically with another Cl atom, whereas $\mathrm{Pa}(3)$ perhaps is saturated.
$\mathrm{Pa}-\mathrm{Cl}$ distances involving the three-coordinate Cl atoms, $\mathrm{Cl}(2)$ and $\mathrm{Cl}(4)$, are somewhat longer than those involving two-coordinate Cl atoms of the simple bridging type. The $\mathrm{Pa}-\mathrm{Cl}(2)$ distances are 2.93 (twice) and $2.98 \AA$; the $\mathrm{Pa}-\mathrm{Cl}(4)$ distances are 2.91 (twice) and $3.08 \AA$ (Table 3). Corresponding distances for bridging Cl's range from 2.74 to $2.84 \AA$ (σ 's for the $\mathrm{Pa}-\mathrm{Cl}$ distances $=0.01-0.02 \AA$). It might also be expected that bond distances involving nine-coordinate $\mathrm{Pa}(2)$ would be longer than those (of a similar kind) for eightcoordinate $\mathrm{Pa}(1)$; greater in turn than those for seven-

Table 3. Bond distances and selected angles

Numbering scheme follows that of Fig.4. Prime markings denote atoms in symmetry-related chains			
$\mathrm{Pa}(1)-2 \mathrm{O}(1)$	$2 \cdot 191 \pm 0.017 \AA$	$\mathrm{Pa}(2)-\mathrm{Cl}\left(2^{\prime}\right)$	$2.982 \pm 0.018 \AA$
$\mathrm{O}(3)$	$2 \cdot 376 \pm 0.042$	$2 \mathrm{Cl}(3)$	2.843 ± 0.012
$2 \mathrm{Cl}(2)$	2.925 ± 0.013	$2 \mathrm{Cl}(4)$	2.913 ± 0.011
$\mathrm{Cl}(4)$	3.082 ± 0.016	$\mathrm{Pa}(3)-2 \mathrm{O}(2)$	2.226 ± 0.020
$\mathrm{Cl}(5)$	2.778 ± 0.019	$\mathrm{O}(3)$	2.341 ± 0.040
$\mathrm{Cl}(6)$	2.762 ± 0.018	$2 \mathrm{Cl}(1)$	2.826 ± 0.018
$\mathrm{Pa}(2)-\mathrm{O}(1)$	2.261 ± 0.043	$\mathrm{Cl}(5)$	2.743 ± 0.019
$\mathrm{O}(2)$	2.268 ± 0.045	$\mathrm{Cl}(6)$	2.760 ± 0.018
2O(3)	2.337 ± 0.022	$[\mathrm{Pa}(3)-\mathrm{Cl}(3)$	$3 \cdot 462 \pm 0 \cdot 017]$
$\mathrm{O}(1)-\mathrm{Pa}(1)-\mathrm{O}(1)$	$132 \cdot 4 \pm 2 \cdot 1^{\circ}$	$\mathrm{Pa}(1)-\mathrm{O}(1)-\mathrm{Pa}(2)$	$112.9 \pm 1.0^{\circ}$
$\mathrm{O}(1)-\mathrm{Pa}(1)-\mathrm{O}(3)$	69.7 ± 1.0	$\mathrm{Pa}(3)-\mathrm{O}(2)-\mathrm{Pa}(3)$	128.5 ± 2.1
$\mathrm{Cl}(2)-\mathrm{Pa}(1)-\mathrm{Cl}(2)$	86.5 ± 0.5	$\mathrm{Pa}(2)-\mathrm{O}(2)-\mathrm{Pa}(3)$	$112 \cdot 6 \pm 1 \cdot 1$
$\mathrm{Cl}(5)-\mathrm{Pa}(1)-\mathrm{Cl}(6)$	152.3 ± 0.6	$\mathrm{Pa}(1)-\mathrm{O}(3)-\mathrm{Pa}(2)$	$103 \cdot 9 \pm 1 \cdot 1$
$\mathrm{O}(1)-\mathrm{Pa}(2)-\mathrm{O}(2)$	$93 \cdot 4 \pm 1 \cdot 6$	$\mathrm{Pa}(1)-\mathrm{O}(3)-\mathrm{Pa}(3)$	$119 \cdot 6 \pm 1 \cdot 8$
$\mathrm{O}(1)-\mathrm{Pa}(2)-\mathrm{Cl}(2)$	$129 \cdot 3 \pm 1 \cdot 1$	$\mathrm{Pa}(2)-\mathrm{O}(3)-\mathrm{Pa}(3)$	$106 \cdot 1 \pm 1 \cdot 1$
$\mathrm{O}(2)-\mathrm{Pa}(2)-\mathrm{Cl}(2)$	$137 \cdot 3 \pm 1 \cdot 2$	$\mathrm{Pa}(2)-\mathrm{O}(3)-\mathrm{Pa}(2)$	$118 \cdot 1 \pm 1 \cdot 8$
$\mathrm{O}(1)-\mathrm{Pa}(2)-\mathrm{O}(3)$	$69 \cdot 3 \pm 1 \cdot 1$	$\mathrm{Pa}(3)-\mathrm{Cl}(1)-\mathrm{Pa}(3)$	$90 \cdot 4 \pm 0 \cdot 6$
$\mathrm{O}(2)-\mathrm{Pa}(2)-\mathrm{O}(3)$	$69 \cdot 4 \pm 1 \cdot 1$	$\mathrm{Pa}(1)-\mathrm{Cl}(2)-\mathrm{Pa}(1)$	$86 \cdot 5 \pm 0 \cdot 5$
$\mathrm{O}(3)-\mathrm{Pa}(2)-\mathrm{O}(3)$	118.1 ± 1.8	$\mathrm{Pa}\left(2^{\prime}\right)-\mathrm{Cl}(2)-\mathrm{Pa}(1)$	$136 \cdot 7 \pm 0 \cdot 2$
$\mathrm{O}(2)-\mathrm{Pa}(3)-\mathrm{O}(2)$	$128.5 \pm 2 \cdot 1$	$\mathrm{Pa}(2)-\mathrm{Cl}(3)-\mathrm{Pa}(2)$	$89.7 \pm 0 \cdot 5$
$\mathrm{O}(2)-\mathrm{Pa}(3)-\mathrm{O}(3)$	$70 \cdot 1 \pm 1 \cdot 3$	$\mathrm{Pa}(2)-\mathrm{Cl}(4)-\mathrm{Pa}(2)$	$87 \cdot 0 \pm 0 \cdot 4$
$\mathrm{Cl}(1)-\mathrm{Pa}(3)-\mathrm{Cl}(1)$	$90 \cdot 4 \pm 0 \cdot 6$	$\mathrm{Pa}(1)-\mathrm{Cl}(4)-\mathrm{Pa}(2)$	$76 \cdot 4 \pm 0 \cdot 3$
$\mathrm{Cl}(5)-\mathrm{Pa}(3)-\mathrm{Cl}(6)$	$163 \cdot 3 \pm 0 \cdot 6$	$\mathrm{Pa}\left(1^{\prime}\right)-\mathrm{Cl}(5)-\mathrm{Pa}(3)$	$145 \cdot 0 \pm 0 \cdot 8$
$\mathrm{Pa}(1)-\mathrm{O}(1)-\mathrm{Pa}(1)$	$132 \cdot 4 \pm 2 \cdot 1$	$\mathrm{Pa}(1)-\mathrm{Cl}(6)-\mathrm{Pa}(3)$	$95 \cdot 2 \pm 0 \cdot 6$

Table 4. Inter- and intra-chain contacts in PaOCl_{2}
$N=$ no. of j neighbors at distance d, d 's in \AA.

	i).	l	istan		$j \geq$						
i	j	N	d	i	j	N	d	i	j	N	d
1	4	2	$3 \cdot 62$	2	4	2	$3 \cdot 46$	3	5	1	3.61
1	5	2	$3 \cdot 85$	2	5	2	$3 \cdot 67$	3	5	1	3.62
1	6	2	$3 \cdot 62$	2	6	2	$3 \cdot 66$	4	5	1	$3 \cdot 60$
1	6	2	$3 \cdot 74$	3	3	1	$3 \cdot 60$	4	6	1	$3 \cdot 70$
2	3	2	$3 \cdot 44$	3	4	1	3.73				
II. $\mathrm{O}(i) \cdots \mathrm{Cl}(j)$ distances $<3.60 \AA$.											
II	j	N	d	,	j	N	d	i	j	N	${ }^{\text {d }}$
1	2	1	$3 \cdot 01$	2	3	2	$3 \cdot 24$	3	4	1	2.79
1	4	2	$3 \cdot 09$	2	5	2	$3 \cdot 47$	3	6	1	3.05
2	1	1	2.95	3	3	1	2.81				
III. $\mathrm{O}(i) \cdots \mathrm{O}(j)$ distances $\leq 3 \cdot 30 \AA . j \geq i$.											
,	j	N	$\stackrel{d}{ }$	i	j	N	${ }^{\text {d }}$	${ }^{i}$	${ }^{j}$	N	$\stackrel{d}{\text { d }}$
1	2	1	$3 \cdot 30$	1	3	2	$2 \cdot 61$	2	3	2	$2 \cdot 62$

$$
\sigma \text { 's: } \mathrm{Cl} \cdots \mathrm{Cl}, 0.02-0.04 \AA ; \mathrm{O} \cdots \mathrm{Cl}, 0.04-0.05 ; \mathrm{O} \cdots \mathrm{O}, 0.04 \AA .
$$

coordinate $\mathrm{Pa}(3)$. The maximum shortening, that which accompanies a change in coordination number from nine to seven, would be about 3-4\% (Pauling, 1960). There is some indication of such a trend in our results; however, at the present level of accuracy we hesitate to say this correlation is firmly established.

There is little in the literature for comparison with the present results. Using the unit-cell data for PaCl_{4} (Zachariasen, 1954) and the atomic coordinates in isostructural UCl_{4} (Mooney, 1949), one obtains $\mathrm{Pa}-\mathrm{Cl}$ distances of 2.43 and $3.09 \AA$ for Pa in eight-coordination. In PaCl_{5} (Dodge, Smith, Johnson \& Elson, 1967), $\mathrm{Pa}-\mathrm{Cl}$ distances of 2.70 and $2.76 \AA$ are found for twocoordinated Cl and seven-coordinated Pa .
$\mathrm{Pa}-\mathrm{Cl}-\mathrm{Pa}$ bond angles within the structure exhibit values ranging from $76 \cdot 4^{\circ}$ to $145 \cdot 0^{\circ}$. The smallest angle, $\mathrm{Pa}(1)-\mathrm{Cl}(4)-\mathrm{Pa}(2)$, involves a three-coordinate Cl ; the largest angle involves the chain-crosslinking $\mathrm{Cl}(5)$ atom. The majority of values occur near 90°. Examples include: $90 \cdot 4^{\circ}$ at $\mathrm{Cl}(1), 86 \cdot 5^{\circ}$ at $\mathrm{Cl}(2), 89 \cdot 7^{\circ}$ at $\mathrm{Cl}(3)$, $87 \cdot 0^{\circ}$ at $\mathrm{Cl}(4)$ and $95 \cdot 2^{\circ}$ at $\mathrm{Cl}(6)$. It is to be noted that the two three-coordinate Cl atoms differ radically in the arrangements of bonds to their three Pa neighbors. Bonds emanating from $\mathrm{Cl}(2)$ are essentially coplanar, the sum of the bond angles around $\mathrm{Cl}(2)$ being $2 \times 136 \cdot 7^{\circ}+86 \cdot 5^{\circ}=359 \cdot 9^{\circ}$. Those from $\mathrm{Cl}(4)$ are decidedly nonplanar. The individual angles are 76.4° (twice) and $87 \cdot 0^{\circ}$.

Coordination polyhedra for the three independent Pa atoms are shown in Fig.5. Each polyhedron has a mirror plane as its sole element of crystallographic symmetry; each contains both oxygen and chlorine atoms as ligands. Owing to bond-length differences of some 20% between $\mathrm{Pa}-\mathrm{O}$ and $\mathrm{Pa}-\mathrm{Cl}$, the following similarities with more symmetric configurations for chemically identical ligands are necessarily qualitative. In this context, we can regard the grouping around $\mathrm{Pa}(2)$ as resembling a trigonal prism +3 configuration, having 4 Cl and 2 O atoms as 'prismatic' ligands and 1 Cl and 2 O atoms as 'equatorial' ligands. As some indication of the distortions, the bond angle, $\mathrm{O}(1)-$ $\mathrm{Pa}(2)-\mathrm{O}(2)$, in the equatorial plane is pinched down from 120° to $93 \cdot 4^{\circ}$, the angles, $\mathrm{Cl}(2)-\mathrm{Pa}(2)-\mathrm{O}(1)$ and $\mathrm{Cl}(2)-\mathrm{Pa}(2)-\mathrm{O}(2)$ are opened up to $129 \cdot 3^{\circ}$ and $137 \cdot 3^{\circ}$, respectively. While the trigonal +3 arrangement is the usual prototype for nine-coordination, the geometry could also be regarded as an antiprism +1 grouping, i.e. $4 \mathrm{O}, 4 \mathrm{Cl}$ atoms +1 additional Cl . The configuration around $\mathrm{Pa}(1)$ is perhaps easiest to categorize. This arrangement appears to be a dodecahedron of the Mo(CN) $)_{8}^{4-}$ type (Hoard. \& Silverton, 1963), but with three short bonds ($\mathrm{Pa}-\mathrm{O}$) and five long bonds ($\mathrm{Pa}-\mathrm{Cl}$). Pertinent bond angles are:

$$
\begin{aligned}
& \text { Type } \mathrm{I}, \mathrm{O}(3)-\mathrm{Pa}(1)-\mathrm{Cl}(4)=69 \cdot 3^{\circ}, \\
& \mathrm{Cl}(2)-\mathrm{Pa}(1)-\mathrm{Cl}(2)=86 \cdot 5^{\circ} ;
\end{aligned}
$$

Fig.4. Full configuration of atoms in polymeric chain in PaOCl_{2}. Direction of view is the same as in Fig. 2. All atoms are in horizontal mirror planes passing approximately out of plane of paper.

$$
\begin{aligned}
& \text { Type II, } \mathrm{O}(1)-\mathrm{Pa}(1)-\mathrm{O}(1)=132 \cdot 4^{\circ} \\
& \qquad \mathrm{Cl}(5)-\mathrm{Pa}(1)-\mathrm{Cl}(6)=152 \cdot 3^{\circ} .
\end{aligned}
$$

Corresponding angles for the idealized dodecahedral configuration, i.e. identical ligands, hard-sphere model are (Hoard \& Silverton, 1963): Type I, $73 \cdot 8^{\circ}$; Type II, $139 \cdot 0^{\circ}$. The coordination around $\mathrm{Pa}(3)$ can also be considered as derived from a dodecahedron with one vertex unoccupied (or at least with one ligand well beyond normal bond distances). Bond angles analogous to those given above are: $\mathrm{Cl}(1)-\mathrm{Pa}(3)-\mathrm{Cl}(1)=90 \cdot 4^{\circ}$ and $\mathrm{O}(2)-\mathrm{Pa}(1)-\mathrm{O}(2)=128 \cdot 7^{\circ}, \mathrm{Cl}(5)-\mathrm{Pa}(3)-\mathrm{Cl}(6)=163 \cdot 3^{\circ}$. A comparison with the previous values indicates a partial collapse to an octahedron +1 arrangement.

Packing relations are most readily seen from Fig. l. The infinite chains are themselves arranged in a quasihexagonal array when viewed along the chain direction. In addition to connections provided by bridging chlorine atoms, the chains abut against one another to give regions of local closest-packing. The inter-chain contacts are exclusively between chlorine atoms, oxygens being effectively buried within the interior of the chains. Some of the non-bonded distances are indicated in Fig. 1; a more complete list is given in Table 4.

Finally, in view of the differences between the three kinds of Pa atoms, it is not entirely clear that these atoms need have one and the same oxidation state. For example, formulations such as $\left(\mathrm{PaIV}_{3} \mathrm{O}_{3} \mathrm{Cl}_{6}\right)_{n}$ or
$\left(\mathrm{Pa}^{I I I} \mathrm{~Pa}^{I V} \mathrm{~Pa}^{\vee} \mathrm{O}_{3} \mathrm{Cl}_{6}\right)_{n}$ both meet the requirements of overall electrical neutrality. However, the existence of any $\mathrm{Pa}{ }^{I I I}$ compounds is at present very uncertain (the only contender appears to be PaH_{3}); hence the formulation in terms of mixed oxidation states is rendered unlikely. The same principle applies to those compositions which hypothesize one or more of the oxygen atoms as OH^{-}or $\mathrm{H}_{2} \mathrm{O}$, since again Pa as $\mathrm{Pa}^{I I I}$ would be required.

We are indebted to Drs H. L. Ammon, C. K. Johnson, J. M. Stewart and A. Zalkin for furnishing copies of the several IBM-7094 programs used in the calculations. We acknowledge also with gratitude the aid of Mr D.H.Wood in the dry-box manipulations of the PaOCl_{2} samples.

References

Ammon, H. L. \& Sundaralingam, M. (1966). J. Amer. Chem. Soc. 88, 4794.
Brown, D. \& Jones, P. J. (1967). J. Chem. Soc. p. 716.

Cromer, D. T. (1965). Acta Cryst. 18, 17.
Dodge, R. P., Smith, G. S., Johnson, Q. \& Elson, R. E. (1967). Acta Cryst. 22, 85.

Elson, R., Fried, S., Sellers, P. \& Zachariasen, W. H. (1950). J. Amer. Chem. Soc. 72, 5791.

Fig. 5. (a) Coordination polyhedron of nine Cl and O neighbors around $\mathrm{Pa}(2)$. Direction of view as in Figs. 2 and 4. (b) Coordination polyhedron of seven Cl and O neighbors around $\mathrm{Pa}(3)$. A mirror plane normal to z axis passes through $\mathrm{O}(3), \mathrm{Cl}(6), \mathrm{Cl}(5)$ and $\mathrm{Pa}(3)$. (c) Coordination polyhedron of eight Cl and O neighbors around $\mathrm{Pa}(1)$. A mirror plane normal to z axis passes through $\mathrm{O}(3), \mathrm{Cl}(4), \mathrm{Cl}(5), \mathrm{Cl}(6)$ and $\mathrm{Pa}(1)$.

[^0]: * Work performed under the auspices of the U.S. Atomic Energy Commission.
 \dagger Permanent address: Chemistry Department, University of the Pacific, Stockton, California.

[^1]: * In response to referee comment, we use the terms coordinated and bonded interchangeably in the sense that if one atom is coordinated to another, this carries the implication of an interaction between the two which we call a bond. No implication is intended that this necessarily is a two-electron, covalent bond. The interaction may even be largely electrostatic in character.

